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Abstract1

Sound event detection (SED) is a widely studied2

field that has achieved considerable success. The3

dynamic routing mechanism of capsule networks4

has been used for SED, but its performance in5

capturing global information of audio is still lim-6

ited. In this paper, we propose a method for7

SED that by combining the capsule network with8

transformer leverages the strength of transformer9

in capturing global features with that of capsule10

network in capturing local features. The proposed11

method was evaluated on the DCASE 2017 Task 412

weakly labeled dataset. The obtained F-score and13

Equal Error Rate are 60.6% and 0.75, respectively.14

Compared to other baseline systems, our method15

achieves significantly improved performance.16

Keywords: Sound event detection, audio tagging,17

gated convolution, transformer, capsule network.18

1 Introduction19

Sound Event Detection (SED) is a task that in-20

volves classifying sound events in an audio clip21

while determining their temporal boundaries. The22

main objective is to assign labels to detected events23

and identify their start and end time within the24

given audio clip. SED has attracted significant at-25

tention, with many potential applications, such as26

biological scene analysis [1, 2], speech recognition27

[3, 4], multimedia retrieval and analysis [5], among28

others.29

Traditional models for sound event detection in-30

clude Gaussian mixture models (GMM) trained31

on Mel-frequency cepstral coefficients (MFCC) [6],32

Hidden markov models [7], and dictionaries con-33

structed using non-negative matrix factorization34

(NMF) [8, 9]. Early methods on sound event detec-35

tion primarily focused on individual sound events,36

and when dealing with multiple sound events, it37

was challenging to extract effective features to sep-38

arate overlapping sound events. This could result39

in a lack of reliability and accuracy in the identifi-40

cation and detection of these events. Hence, many41

deep learning-based methods have emerged to ad-42

dress this issue [10–13].43

Deep Neural Networks (DNN)-based sound event44

detection methods, such as [14], often require a 45

large number of strongly labeled audio samples 46

[15, 16], where the sound event categories and their 47

onset and offset time are annotated. Obtaining ac- 48

curate and reliable annotations can be challenging 49

in practice. On the other hand, weakly labeled 50

sound event detection addresses this issue by us- 51

ing labels that only provide category information 52

of sound events, but not specify their onset and off- 53

set time. This approach effectively mitigates the 54

requirement of strongly labelled data. 55

Several deep learning models have been devel- 56

oped. For example, convolutional neural networks 57

(CNN) have been used to learn audio features 58

through translational invariance, eliminating the 59

need for complex data reconstruction in sound 60

event classification [17]. Recurrent neural networks 61

(RNN) enhance the accuracy of audio classification 62

and recognition by capturing relationships between 63

preceding and subsequent audio frames through re- 64

current neurons. Combining the local shift invari- 65

ance of CNN and the contextual modeling capa- 66

bility of RNN, convolutional recurrent neural net- 67

works (CRNN) have shown promising performance 68

in sound event detection tasks [19]. 69

In recent years, several methods have emerged 70

to enhance the performance of sound event de- 71

tection models. For instance, attention mecha- 72

nisms are applied to SED in [20]. In this work, 73

a weakly labeled SED model based on multiple in- 74

stance learning (MIL) is established, where a two- 75

step attention pooling mechanism is adopted to im- 76

prove model training. By incorporating features ob- 77

tained from CNN networks into local predictions in 78

the time and frequency domains of audio events, 79

this approach yields more accurate detection re- 80

sults compared to traditional methods for weakly 81

labeled sound event detection. Furthermore, NMF 82

has been combined with CNN to provide approx- 83

imately strong labels for weakly labeled datasets 84

used in sound event detection [20, 21]. The CNN- 85

SAN-Transformer architecture [22] is introduced to 86

replace CNN for extracting high-level features with 87

a self-attention networ (SAN). This architectural 88

modification effectively reduces model complexity 89

while achieving higher prediction accuracy when 90

compared to the CNN-Transformer architecture. 91

In addition, ResNet and its variants were used in 92
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[23], which significantly improves the system per-93

formance through multichannel spatial audio data94

augmentation.95

Another approach is based on capsule networks96

(CN) [24] which offer the potential ability to ac-97

curately detect targets within overlapping features.98

In contrast to traditional neural networks, capsule99

networks accurately capture the contextual rela-100

tionships among words in a sentence through dy-101

namic routing [24]. This addresses the limitations102

of CNNs in representing feature angles, relative po-103

sitions, and avoiding information loss caused by104

pooling. Moreover, CNs automatically adjust cap-105

sules to extract overlapping features, thereby en-106

hancing the overall model’s capability to recognize107

targets. Capsule networks have vector inputs and108

outputs, enabling the network, through the dy-109

namic routing algorithm, to identify and establish110

relationships between different features. Recent re-111

search has shown promising results of CNs used for112

sound event detection [25]. In this research, gate113

convolutional networks are employed to extract fea-114

tures, which are then utilized by CN models for115

sound event detection and recognition [26]. The116

dynamic routing algorithm, serving as the core of117

CNs, can be considered an attention mechanism118

that learns and trains multiple attributes such as119

target shape and position while retaining crucial120

features. CN has also been applied to weakly la-121

beled sound event detection [28], showing promis-122

ing performance. The CN model is thus our focus123

in this paper.124

Traditional capsule networks, however, suffer125

from low training efficiency due to the internal loops126

of their dynamic routing algorithm. In addition,127

CN is limited in capturing global feature of sound128

events which could potentially result in perfor-129

mance degradation. To address this issue, we pro-130

pose a weakly labeled SED model based on capsule-131

transformer model. More specifically, we replace132

the traditional convolutional layers with parallel133

gated convolutional layers, effectively improving134

the training speed, and reducing model computa-135

tion complexity, then we use transformer’s encoder136

structure to extract audio features. In addition, in137

the capsule layer, inspired by the model in [26], we138

introduce a temporal attention (TA) layer, which139

employs temporal segments in the attention mech-140

anism, thereby enhancing the overall performance141

of the model. We evaluate our proposed method142

on the DCASE 2017 Task 4 dataset [28]. Com-143

pared to the baselines, our method demonstrated144

a significant performance improvement. The main145

contributions are summarized below:146

• We introduce the integration of the trans-147

former model with the capsule model to im-148

prove the performance of the capsule model for149

sound event detection.150

• We optimize a multi-layer parallel gated con- 151

volutional structures to improve the computa- 152

tional efficiency and detection accuracy of the 153

proposed model. 154

2 Background 155

2.1 Capsule 156

Capsule networks [24] aim to overcome some of the 157

limitations of traditional network structures, such 158

as CNN. The overall framework of capsule net- 159

works, as shown in Fig. 1, can be divided into two 160

parts: the encoding part, which comprises convolu- 161

tional layers with rectified linear unit (ReLU) (e.g. 162

ReLU Conv1), primary capsule layer (i.e. Prima- 163

ryCaps), and the second capsule layer (i.e. Second- 164

Caps), and the decoding part, which includes multi- 165

ple fully connected layers with nonlinear activation 166

functions ReLU and Sigmoids (e.g. FC ReLU and 167

FC Sigmoid). The encoder aims to take audio in- 168

put (e.g. log-mel spectrograms) and generate more 169

compact embeddings. In SecondCaps, the frame 170

highlighted refers to a masked frame that system is 171

learned to reconstruct. 172

The inputs and outputs of the neurons from tra- 173

ditional neural networks can only express the likeli- 174

hood of extracted features without considering their 175

spatial relationships. In contrast, capsule networks 176

utilizes capsules as fundamental components [24], 177

which consist of multiple neurons, with each neuron 178

represented by a vector. Notably, both the inputs 179

and outputs of these neurons are vectors, where the 180

output value denotes the probability of entity ex- 181

istence within the range of 0 to 1. The magnitude 182

and direction of these vectors correspondingly indi- 183

cate the likelihood and attributes of the capsules. 184

Table 1 illustrates the disparities between vec- 185

tor neurons (VN) and scalar neurons (SN). In this 186

table, xi, i = 1, 2, ..., n, represents the input of a 187

scalar neuron, wi, i = 1, 2, ..., n, represents the cor- 188

responding weight, and b represents the bias. The 189

variable ui, i = 1, 2, ..., n represents the lower-level 190

capsule, while ûi, i = 1, 2, ..., n represents the pre- 191

diction of the lower-level capsule for the higher-level 192

capsule,
∑

denotes the summation operation on 193

the inputs, cij represents the coupling coefficient 194

between different layer vector elements, and sj rep- 195

resents the input to the capsule vector of the current 196

layer, which is the weighted sum of the prediction 197

vectors. During the forward propagation process of 198

vector neurons, different capsules interact with each 199

other using the dynamic routing mechanism, follow- 200

ing the algorithmic process in Table 2. During the 201

forward propagation process of scalar neurons, the 202

product of the input xi and the weight is summed 203

to form scalar ai, which is then transformed into 204

the output hj through a non-linear function. 205



3

Fig. 1 The structure of the capsule network. This figure was adapted from [22].

Table 1 Differences between vector neurons (VN) and scalar neurons (SN)
VN SN

Input ui xi

Transformation ûj|i = Wijui -
Operations Weighted summation sj =

∑
i cij ûj|i aj =

∑
i wixi + b

Nonlinear activation vj =
||sj ||

1+||sj ||2
·

sj
||sj ||

hj = g(aj)

Output vj hj

The dynamic routing algorithm aims to itera-
tively update the weight matrix connecting the cap-
sule layers in order to select the detection capsules
that exhibit high consistency with the primary cap-
sule layer. This algorithm facilitates the matching
of the primary capsule, which represents sound fea-
tures, with the secondary capsule layer, which rep-
resents event categories. The calculation process is
outlined below:

ûj|i = Wijui (1)

sj =
∑
i

cij ûj|i (2)

vj =
||sj ||

1 + ||sj ||2
· sj
||sj ||

(3)

where ûj|i represents the prediction from ui to vj ,
Wij indicates the corresponding weight matrix, and
vj represents the output vector of capsule j. The
vector sj undergoes a squash non-linear function
for compression and normalization, resulting in vj
of unit-norm.

cij =
exp(bij)∑
k exp(bik)

(4)

where the parameter bij is used for updating the
coupling coefficient, with initial value typically set
to 0, as illustrated by the following equation,

bij ←− bij + ûj|i · vj (5)

During each forward propagation process, the206

value of vj is computed based on bij . The optimal207

coupling coefficient is eventually obtained through208

iterative updates to bij and subsequent updates to209

cij .210

2.2 Transformer211

The transformer was initially proposed by the212

Google team in 2017 [29] as a sequence-to-sequence213

model for machine translation. Different from CNN 214

and RNN, it employs a self-attention mechanism to 215

establish global contextual information and repre- 216

sents input data using positional encodings. As a 217

result, the transformer enables more parallel com- 218

putations, leading to significant performance im- 219

provements compared to traditional network struc- 220

tures. 221

The transformer architecture consists of multiple 222

encoder and decoder layers. Both the encoder and 223

decoder are comprised of N identical layers, each 224

utilizing residual connections and layer normaliza- 225

tion. The encoder takes input features and converts 226

them into high-level embeddings, which are then 227

transformed by the decoder to generate the output. 228

Each encoder primarily consists of a multi-head 229

self-attention (MSA) module and a position-wise 230

feed-forward network (FFN). To enable deeper 231

models, residual connections are applied to each 232

module, followed by layer normalization (LN). In 233

contrast, the decoder includes an additional cross- 234

attention (CA) module between the MSA and FFN 235

modules. 236

In SED, the events often involve multiple occur- 237

rences within an audio clip. For instance, in a traf- 238

fic environment, car honking sounds can appear at 239

any time within the audio recording. By leveraging 240

the attention mechanism of the transformer (scaled 241

dot-product attention), information from different 242

time points in an audio clip can be effectively cap- 243

tured. For SED, only the encoder is required. Each 244

encoder is composed of multiple layers, and the 245

input to each layer undergoes processing through 246

the MSA mechanism. The input vectors are trans- 247

formed into outputs using query, key, and value 248

transformation matrices. In this case, we adhere 249

to the notation format from [23], where the input is 250

represented as a T × C matrix, with matrices WQ
251

and WK having shapes of C × dk, and matrix WV
252

having a shape of C × dv. Here, dk and dv are in- 253
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Table 2 The description of Dynamic Routing Algorithm

Dynamic Routing Algorithm

Input: ûj|i, r, l
Output: layer (l + 1) capsule vj
Step 1 for all capsule i in layer l and capsule j in layer (l + 1) : bij ←− 0

Step 2 for r interations do

Step 3 for all capsule i in layer (l + 1) : cij ← Softmax(bij)

Step 4 for all capsule i in layer (l + 1) : sj ←
∑

i cij ûj|i

Step 5 for all capsule i in layer (l + 1) : vj ← Squash(sj)
Step 6 for all capsule i in layer l and capsule j in layer (l + 1) : bij ← bij + ûj|i · vj
Step 7 end for

tegers, and Q, K, and V can be obtained from the254

following formula.255

Q = xWQ (6)

K = xWK (7)

V = xWV (8)

The structural diagram of the transformation256

matrices is depicted in Fig. 2, where qi, ki, vi repre-257

sent the query, key, and value vector, respectively.258

The formula for the attention mechanism is defined259

as follows.260

Attention(Q,K, V ) = (
QKT

√
dk

)V (9)

where the shape of Attention(Q,K, V ) is T × dk,261

indicating that the attention mechanism calculates262

softmax functions on the vectorsQ, K, and V . This263

step involves transforming the related vector groups264

into probabilities along the temporal steps. In the265

equation above, Q, K, and V represent the feature266

correlations at different time steps, with a shape267

of T × T . We utilize
√
dk to perform the scaling268

operation. The operational flowchart is shown in269

Fig. 3 [29].270

The MSA mechanism divides Q, K, and V into
h heads, enabling parallel computation of the in-
put x and its similarity with other inputs. The
outputs are then concatenated, leading to a signif-
icant improvement in the computational efficiency
of the model. In the parallel computation, we per-
form matrix multiplication between the input xi

and weight matrices WQ
i , WK

i and WV
i . Using the

obtained Q, K, and V matrices, we calculate the
attention. The resulting matrices are concatenated
and multiplied by the weight matrix WO to obtain
the output of the encoding layer, as follows:

MulHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

(10)

headi = Attention(xWQ
i , xWK

i , xWV
i ) (11)

where headi represents the attention from the i-th 271

head. 272

The feed-forward layer in the transformer en-
coder section essentially consists of a multi-layer
perceptron (MLP) with a linear structure and a
convolutional structure. It utilizes the Gaussian er-
ror linear units (GELU) and linear activation func-
tions and can be obtained from the following for-
mula, where x is the output from the previous layer,
and W and b are the learning parameters.

GELU(x) = 0.5x(1 + tanh(

√
2

π
(x+ 0.044715x3)))

(12)

FFN(x) = max(0, xW1 + b1)W2 + b2 (13)

2.3 Applications to sound event de- 273

tection 274

The transformer model has demonstrated excellent 275

performance in audio classification [22]. Compared 276

to traditional neural network detection models, the 277

self-attention mechanism in the transformer cap- 278

tures long-range dependencies and mitigates issues 279

of gradient vanishing or exploding. Moreover, the 280

model structure in transformer is highly adaptable, 281

allowing for flexible adjustments tailored to specific 282

tasks. 283

The capsule model has gained significant atten- 284

tion in the audio domain. To deal with overlap- 285

ping sound events, capsule networks utilize their 286

dynamic routing mechanism to gather diverse infor- 287

mation related to the temporal and spatial aspects 288

of audio features. These networks perform well at 289

learning representations from limited data, com- 290

pensating for information loss that occurs in tra- 291

ditional neural network structures during training. 292

However, using the capsule network model alone 293

also has some limitations, such as a low training 294

speed and degraded performance when dealing with 295

complex audio datasets. The self-attention mecha- 296

nism of transformer is useful for feature extraction 297

in complex datasets, such as polyphonic audio event 298

datasets. 299
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Fig. 2 Structure diagram of transformation matrix.

Fig. 3 Implementation process of multi-head self attention mechanism. This figure was adapted from [29].

In this study, we propose the capsule-transformer300

fusion model by utilizing the encoder of the trans-301

former to extract features and integrating them302

with the capsule network model. First, we employ303

gated convolution to extract features from the in-304

put logmel spectrogram, generating embedding vec-305

tors along the time axis through feature mapping306

in the convolution. We then pass these vectors307

to the transformer for refined feature representa-308

tion with improved global information. The afore-309

mentioned capsule network is applied to the output310

of the transformer, incorporating an improved dy-311

namic routing mechanism to predict the probability312

of the existence of a sound class. This approach fa-313

cilitates audio feature extraction, thereby improv-314

ing performance in sound event detection.315

3 Proposed Method316

In this section, we present a method of integrating317

these architectures for polyphonic sound event de-318

tection using weakly labeled data. The collection319

of strongly labeled data is a time-consuming task320

in traditional SED methods, due to the substantial321

effort required for annotation. Consequently, our322

approach leverages a weakly labeled dataset.323

3.1 Model architecture 324

The proposed model architecture is illustrated in 325

Fig. 4, which consists of three parts: the gated 326

convolutional layer, the transformer layer, and the 327

capsule layer. The first two parts are used for fea- 328

ture extraction, while the third part is employed 329

for classification and detection of acoustic events. 330

In the convolutional layer, we use gated convolution 331

[30], with which a dynamic feature selection mecha- 332

nism can be applied to each channel and spatial po- 333

sition, enabling local feature selection for different 334

audio instances. Three parallel gated convolutional 335

neural network blocks are utilized to extract infor- 336

mation from the input features. Each parallel block 337

consists of three convolutional layers. After each 338

block, a two-dimensional max pooling (Max Pool) 339

is applied along the frequency axis for dimension 340

reduction, while the time axis remains unchanged 341

to match the target length. In addition, the con- 342

volutional kernels of same size are used within the 343

convolutional layers to extract information from in- 344

put features. 345

The encoder part of the transformer is incorpo- 346

rated following the convolutional layers. This addi- 347

tion helps the system to capture global information 348

within audio signals. The encoder structure con- 349

sists of self-attention and feed-forward layers. Sec- 350

tion 2.2 outlines the self-attention mechanism, and 351
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Fig. 4 The neural network architecture proposed in this paper consists of three parts: (1) the parallel gated
convolutional layer, (2) the transformer encoder layer, and (3) the improved capsule layer. The traditional
capsule layer and the temporal attention (TA) layer are learned in parallel to estimate the probability of
the entity represented by the capsule.

the residual connections and normalization incorpo-352

rated after the self-attention layer to improve con-353

vergence speed. Subsequently, the features are in-354

put to the feed-forward neural network layer, where355

a fully connected network with the GELU activa-356

tion function is applied to enhance the model’s gen-357

eralization capability. Then, residual connections358

and normalization are applied before the final out-359

put.360

In the capsule layer, we utilize an improved cap-361

sule network structure, incorporating a temporal362

attention layer, and compute the output in parallel363

with the second capsule layer. The introduction364

of this layer effectively addresses the problem of365

reduced model performance caused by background366

noise in audio data, especially in complex datasets367

[26]. The features are input to the primary capsule368

layer with ReLU activation. After reshaping, the369

output becomes individual time slices, which are370

considered as separate inputs for subsequent lay-371

ers. The time slices are then passed to the second372

capsule layer and a temporal attention (TA) layer.373

In the second capsule layer, a dynamic routing algo-374

rithm is used to train the features and calculate the375

output. In contrast to the original capsule routing376

mechanism, the TA layer, inspired by the attention377

schemes outlined in [31, 32], employs the attention378

weights on the audio frames, i.e. attending the vital379

frames while attenuating irrelevant ones. Finally,380

the outputs of the second capsule layer and the TA381

layer are merged to obtain the predicted values of382

the data features. These predicted values can be383

seen as the expected length of the capsules relative384

to the probability distribution derived from the TA385

layer. Experimental results demonstrate that using386

the TA layer yields better performance compared387

to the original routing mechanism.388

3.2 Parallel gated convolutional 389

layer 390

We incorporate three parallel paths of gated convo-
lution. Gated convolution allows for the automatic
learning of soft masks from the data, as demon-
strated by the following formula:

Gatingy,x =
∑∑

Wg · I (14)

Featurey,x =
∑∑

Wf · I (15)

Oy,x = ∅(Featurey,x)⊙ σ(Gatingy,x) (16)

where the subscripts x and y denote the coordinates 391

of each channel in the input features, Wg represents 392

the convolution kernel that operates on the input 393

to generate the soft mask, Wf represents the convo- 394

lution kernel that operates on the input to generate 395

the feature map, and σ represents the sigmoid acti- 396

vation function applied to the outputs in the gated 397

convolution. The soft mask, activated by this func- 398

tion, ranges between 0 and 1. Finally, ∅ represents 399

the activation function applied after the convolu- 400

tion, and we use ReLU for ∅ in this paper. Fig. 5 401

illustrates the comparison between traditional par- 402

tial convolution and gated convolution. In the case 403

of partial convolution, the ReLU Update represents 404

convolving features by updating the mask. 405

In each pathway, we perform three convolution 406

operations using 128 filters, which consist of 64 lin- 407

ear filters and 64 sigmoid filters, with a stride of 1. 408

We extract features by employing symmetric con- 409

volution kernels of size 3. After each convolutional 410

block, we apply 2 × 2 average pooling to extract 411

high-level features. The input feature has a shape 412

of T × F , where T represents the number of time 413

frames, and F represents the number of frequency 414

bins in the input feature. The output dimension 415
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Fig. 5 Illustration of the partial convolution (left) and the gated convolution (right).

of the convolutional layer is T1 × F1 ×M , with M416

representing the number of feature maps obtained417

after concatenating the outputs of the three par-418

allel convolutional blocks. The values T1 and F1419

correspond to the number of time frames and fre-420

quency bins, respectively, after feature extraction421

in the gated convolutional layer.422

3.3 Transformer encoder423

The transformer architecture we employ is illus-424

trated in Fig. 6. In this structure, we employ 3 lay-425

ers of encoders. After feature extraction in the con-426

volutional layer, the data is initially passed to the427

self-attention module within the encoder structure.428

This module, comprising a linear layer and a single-429

headed attention mechanism, captures the inter-430

dependencies among features. At this stage, the431

dimensions of the data representation is B×N×T1,432

where B denotes the batch size, N represents the433

sequence length of the input features, and T1 is the434

dimension of each input vector. The output of the435

multi-head attention is subsequently normalized us-436

ing layer normalization, preserving a dimension of437

B × N × T1. Subsequently, the output is fed into438

the feed-forward neural network layer, which com-439

prises two fully connected layers separated by an440

activation function. The first fully connected layer441

reduces the dimension to B×N×2T1, while the sec-442

ond fully connected layer restores it to B×N ×T1.443

Following another round of layer normalization, the444

output is directed to the capsule layer.445

3.4 Capsule layer446

The structural flowchart of the capsule layer we447

have used is shown in Fig. 7. The first layer of the448

capsule layer is the primary capsule layer, which is449

essentially a ReLU convolutional layer. The out-450

put from the transformer layer is first passed to 451

the primary capsule layer. The output features are 452

reshaped into a tensor of size T1 × · × U and com- 453

pressed [33]. Here, T1 represents the time dimen- 454

sion before reshaping, and U denotes the capsule 455

size, which is set to 4 in our case. This layer uses 456

64 filters with a kernel width of 3, and the time 457

and frequency dimensions are set to 1 and 2, re- 458

spectively. 459

The time slices after the output of the primary
capsule layer are passed to the second capsule layer
and the TA layer. Within the capsule layer, the
output is calculated using the inter-layer dynamic
routing mechanism, with U = 8. The length of each
output vector is computed, and o(t) ∈ RL is used
to represent the activation vector for each time slice
t. The TA layer is connected to L units and a sig-
moid activation function, resulting in an output of
z(t) ∈ RL, where L represents the number of classes
(sound events). Finally, for class l, we combine o(t)
and z(t) as follows [26]:

yl =

∑T
t=1ol(t)zl(t)∑T

t=1 zl(t)
= Et∼ql(t)[ol(t)] (17)

where ql(t) = softmax(logZl), Zl ∈ RT and 460

{zl(t)}t=1,...,T . We select a probability threshold τ1 461

for the constructed time slices [26]. If the final pre- 462

diction yl is greater than the specified threshold τ1, 463

it indicates the presence of the sound event. Other- 464

wise, it is considered as absence of the sound event. 465

In addition, we set a threshold for the probability 466

of τ2 with respect to ol(t) to calculate the onset and 467

offset time. To mitigate noise, we employ morpho- 468

logical closing operations, which involves processing 469

the regions of interest through convolution, utiliz- 470

ing their starting and ending points to determine 471

the onset and offset time. 472
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Fig. 6 The network architecture of the transformer encoder.

Fig. 7 The network architecture of the capsule
layer.

4 Experiments473

4.1 Dataest474

Since our proposed method focuses on weakly la-475

beled polyphonic event detection, we conducted an476

evaluation using the DCASE 2017 Task 4 dataset477

titled “Large-scale weakly supervised sound event478

detection for intelligent vehicles”. This dataset479

is a subset of Google AudioSet, encompassing 17480

sound events classified into two categories: “Warn-481

ing” and “Vehicle”. We selected this dataset due to482

its extensive nature, encompassing more than 140483

hours of weakly labeled audio data segments that484

cover a wide range of environmental sounds. The485

dataset is divided into three subsets: a training sub-486

set with 51,172 audio clips, a validation subset with487

488 audio clips, and an evaluation subset with 1,103488

audio clips. The majority of the audio segments489

have a duration of 10 seconds.490

To assess the performance of these tasks, we uti-491

lized metrics such as precision, recall, and macro-492

averaged F-score. Additionally, for the SED task,493

we calculated the frame-level error rate at a one-494

second time resolution. The sed eval toolbox [32]495

was employed for evaluating the SED task. 496

4.2 Baseline system 497

We conducted a comparative analysis of our pro- 498

posed method with the following baseline systems: 499

GCCaps [26]: refers to gated convolution cap- 500

sule. This system comprises three gated convolu- 501

tional network blocks, two capsule layers, and a 502

TA layer that is run in parallel to the high-level 503

capsule layer. Normalization is applied after each 504

gated convolutional layer and the primary capsule 505

layer. Each convolutional block consists of three 506

gated convolutional layers. 507

GCRNN [35]: refers to gated convolutional re- 508

current neural network. In this system, the ReLU 509

activation function after each audio classification 510

layer of the CNN is replaced with learnable gated 511

linear units. 512

GCNN [26]: refers to gated CNN. This system is 513

similar to the GCRNN model [35] as it replaces tra- 514

ditional convolutional neural networks with gated 515

convolutions. However, it does not include recur- 516

rent layers. 517

CNN-transformer [36]: refers to an integrated 518

CNN and transformer model. This system con- 519

sists of four convolutional blocks, each containing 520

two convolutional layers. Normalization and ReLU 521

non-linearity are applied after each convolutional 522

layer. The model utilizes the Adam optimizer with 523

a learning rate of 0.001 and incorporates mixup 524

with an alpha value of 1 to mitigate overfitting dur- 525

ing training. The final output is obtained by aver- 526

aging the frequency-axis output of the last convolu- 527

tional layer and predicting the presence probability 528

of sound events for each time frame using a fully 529

connected layer with sigmoid non-linearity. 530

4.3 Experimental setup 531

Prior to feature extraction, we employed mel spec- 532

trograms as input features. Each audio clip was re- 533

sampled to 16 kHz and subjected to mel filter banks 534
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and a logarithmic non-linearity operation. Log mel535

features were computed with a frame length of 64536

ms, a 20 ms overlap, and mel frequency units per537

frame. Consequently, a feature vector of size 240 ×538

64 was generated for each audio sample.539

Tables 3 and 4 provide the hyperparameters used540

at different stages of the model, where “Tf” refers541

to the transformer and the number following Tf in-542

dicates the index of transformer layer. Within each543

gated convolutional network section, we utilized 64544

filters of size 3×3. The pooling size for both the545

audio tagging subtask and the sound event detec-546

tion subtask was set to 2×2. To address overfit-547

ting and expedite convergence, we used batch nor-548

malization after each convolutional layer and the549

primary capsule layer. In the transformer struc-550

ture, the data feature input to the encoder had a551

sequence length of 64, and the vocabulary size was552

3840. We employed an encoder structure with one553

attention head.554

For optimization, we employed the Adam opti-555

mizer [37] as the gradient descent algorithm, main-556

taining a fixed learning rate of 0.001. The routing557

iteration was set to 4, and the learning rate was de-558

cayed by a factor of 0.9 every two epochs. Binary559

cross-entropy was used as the loss function, and gra-560

dients were calculated accordingly. The mini-batch561

size was set to 44, and we trained the system for a562

total of 30 epochs.563

To mitigate the issue of significant class imbal-564

ance within the dataset, we implemented data bal-565

ancing techniques as suggested in [32]. This en-566

sured that our training, testing, and evaluation sets567

encompassed samples from each class of the audio568

dataset, thereby preventing classification bias.569

During the inference process, we averaged the570

predictions from the top five epochs, based on their571

highest accuracy on the validation set, to obtain the572

final result. In our system, the detection thresholds573

for sound event detection (SED) were set to 0.3 and574

0.6. Additionally, we set the expansion and corro-575

sion sizes for SED to 10 and 5, respectively. These576

hyperparameters were determined through experi-577

ments conducted on the validation set.578

Apart from the SED results, we also show the579

audio tagging results, by aggregating the detection580

results over the whole signal. Audio tagging is a581

multi-label classification problem by identifying the582

audio classes from the audio clip, while the SED583

task focuses on detecting the presence or absence584

of target sound events in continuous audio record-585

ings. With the SED results, it is straightforward586

to obtain the tagging results, by dropping the in-587

formation related to onset/offset time of the sound588

events.589

4.4 Comparative experiment 590

In this section, we conducted comparative exper- 591

iments between the GCCaps model mentioned in 592

[26] and the proposed model in this paper. Specif- 593

ically, we focused on the case where the convolu- 594

tional layer has a size of 3. The comparison graph 595

of different metrics including F1 Score and Preci- 596

sion at batch size 30-44 is shown in Fig. 8. It is 597

clear that our proposed model achieved higher F1 598

score and precision. 599

To further demonstrate the effectiveness of the 600

feature extraction part in our model and highlight 601

the differences between our proposed model and the 602

baseline models, we provide t-distributed stochas- 603

tic neighbor embedding (t-SNE) cluster visualiza- 604

tions of the feature extraction outputs from both 605

the baseline system and our proposed system. t- 606

SNE is an unsupervised nonlinear technique [38] 607

widely employed in various fields, including image 608

and audio analysis. Its primary purpose is to vi- 609

sualize high-dimensional data by mapping it to a 610

lower-dimensional space, thereby observing the re- 611

lationships between data points. In the t-SNE al- 612

gorithm, similarity in the high-dimensional space is 613

represented by a Gaussian distribution, while sim- 614

ilarity in the low-dimensional space is represented 615

by a t-distribution. The closer the points are, the 616

higher their similarity. 617

We trained both models using the same train- 618

ing samples, and the results are depicted in Fig. 619

9. From the figure, it can be observed that our 620

proposed model exhibits denser clusters and higher 621

similarity among samples of the same class com- 622

pared to the baseline model. This suggests that 623

it can extract features with greater accuracy for 624

samples with ambiguous characteristics. In other 625

words, the proposed network architecture can bet- 626

ter identify samples based on their distinctive fea- 627

tures. 628

In addition to our system, we also evaluated 629

the GCCaps model proposed in [24], along with 630

GCRNN and GCNN, as part of a comparative 631

study for ablation experiments. Fig. 10 compares 632

the loss for different epochs of the four models 633

against the different baseline systems. It can be 634

observed that our proposed model has lower loss 635

compared to the other models. 636

4.5 Results and discussion 637

Table 5 presents the F-score, accuracy, and re- 638

call of different methods on the evaluation set 639

for the audio tagging task. In the audio tagging 640

task, our proposed system achieved an F-score of 641

60.6% on the evaluation set, surpassing other meth- 642

ods in the same task. The fusion of the trans- 643

former and capsule models yielded the best perfor- 644

mance, slightly outperforming the use of the GC- 645
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Table 3 Model parameters (feature extraction)

Feature extraction
Conv1 Tf1 Conv2 Tf2 Conv3 Tf3

Kernel size 64@3×3 - 64@3×3 - 64@3×3 -
Stride 1×1 - 1×1 - 1×1 -

Pooling size 2×2 - 2×2 - 2×2 -
Num head - 1 - 1 - 1

Dropout rate 0.2 0.3 0.2 0.3 0.2 0.3
Activation function ReLU ReLU ReLU ReLU ReLU ReLU

Fig. 8 The comparative graphs of different models at batch size 30-44 under various metrics are shown.
(a) represents the comparison among the three models based on the F1 Score metric, while (b) represents
the comparison among the three models based on the Precision metric.

Fig. 9 The t-SNE visualization of the output features from different models. (a) represents the feature
output of the gated convolutional layer in the GCCaps model, and (b) represents the feature output of the
encoder layer in the proposed Transformer-Capsule model.
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Fig. 10 Comparison of the loss function at different epochs for four different models including the proposed
method and three baseline systems. The proposed Transformer-Capsule model exhibits the lowest loss and
minimal deviation.

Table 4 Model parameters (capsule layers)

Capsule layers
Primary capsule layer Second capsule layer

Kernel size 32@3×3 -
Stride 1×1 -

Dropout 0.5 -
Activation function Squashing Squashing
Capsule dimension 8 16

Caps model. GCRNN and GCNN demonstrated646

comparable performance in this subtask. However,647

the CNN-Transformer model had the lowest F-score648

of 55.7%.649

Table 6 presents the F-score, accuracy, recall,650

and error rate of different methods on the evalu-651

ation set for the sound event detection task. For652

the sound event detection subtask, the fusion of the653

transformer and capsule models achieved the low-654

est error rate of 0.75 and a good F-score of 47.9%,655

slightly outperforming the GCCaps model. The656

performance of GCCaps was slightly better than657

that of GCRNN, with an F-score of 46.3% and an658

error rate of 0.76. The inclusion of recurrent lay-659

ers enhanced the temporal localization ability of the660

GCRNN model, as its score was significantly higher661

than that of GCNN, and its error rate was rela-662

tively low. Although the CNN-Transformer model663

had the highest F-score, its error rate was higher at664

0.91.665

Table 7 presents the F-scores of various events666

in the audio tagging subtask achieved by our pro-667

posed model, while Table 8 shows the error rates668

of various events in the sound event detection sub-669

task. For the audio tagging subtask, events such670

as “Civil defense siren” and “Screaming” exhibited671

higher classification accuracy, while events like “Car672

passing by” and “Bus” demonstrated lower classifi-673

cation accuracy. In the sound event detection sub-674

Table 5 Different performance results of audio tag-
ging subtask

Method F score Precision Recall

Transformer-Capsule 60.6% 62.9% 57.6%
GCCaps 58.6% 59.2% 59.6%
GCRNN 57.3% 53.6% 59.6%
GCNN 57.2% 59.0% 57.2%

CNN-Transformer 55.7% 55.4% 56.1%

Table 6 Different performance results of sound
event detection subtask

Method F score Precision Recall Error rate

Transformer-Capsule 47.9% 68.7% 29.1% 0.75
GCCaps 46.3% 58.3% 38.4% 0.76
GCRNN 43.3% 57.9% 34.8% 0.79
GCNN 37.5% 46.6% 31.1% 0.88

CNN-Transformer 48.3% - - 0.91

task, events such as “Civil defense siren” and “Train 675

horn” had lower error rates, while events like “Bi- 676

cycle” and “Truck” had higher error rates. 677

To better observe the accuracy and relevance of 678

the model, we conducted a paired-sample t-test be- 679

tween the baseline model GCCaps and the proposed 680

model to compare the differences between the two 681

sets of samples. The formula is as follows: 682

t =
Md − 0

sd/
√
n
∼ t(n− 1) (18)

where Md represents the mean of the differences be- 683

tween samples, sd represents the standard deviation 684

of the differences between samples, n is the number 685

of differences, nd represents the sample size, and the 686

t-statistic follows the t-distribution with degrees of 687

freedom n − 1. With a threshold set at p = 0.05, 688

when |t| > tα
2 ,n−1, we reject the null hypothesis 689

and conclude that there is a significant difference 690
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Table 7 F score of audio tagging subtask for each event

Train horn Air horn, Truck horn Car alarm Reversing beeps Bicycle Skateboard Ambulance Fire engine, fire truck Civil defense siren
61.1% 62.2% 66.0% 45.0% 49.6% 65.5% 50.4% 57.4% 82.0%

Police car Screaming Car Car passing by Bus Truck Motorcycle Train Micro average
48.1% 87.6% 65.7% 30.1% 43.5% 53.5% 58.9% 76.8% 60.6%

Table 8 Error rate of sound event detection subtask for each event

Train horn Air horn, Truck horn Car alarm Reversing beeps Bicycle Skateboard Ambulance Fire engine, fire truck Civil defense siren
0.66 0.71 0.67 0.79 1.20 0.89 0.88 0.93 0.31

Police car Screaming Car Car passing by Bus Truck Motorcycle Train Micro average
0.9 0.68 0.93 1.00 1.04 1.05 0.72 0.67 0.75

between the two sets of samples representing the691

overall results. Calculating the value of t as -0.383,692

we looked up the corresponding t-value in the t-693

table using the degrees of freedom and found that694

the calculated t-value is greater than the value in695

the table. Therefore, we reject the null hypothesis,696

indicating that there are significant differences in697

the results obtained by the two methods.698

In the proposed model, we incorporated the im-699

proved capsule network model proposed in [26]700

and introduced the encoder structure of the trans-701

former. In the experiments, we found that this702

fusion method can effectively improve the perfor-703

mance of the model on the test and evaluation sets.704

Specifically, the introduction of parallel gated con-705

volution with symmetric convolutional kernels al-706

lows for effective utilization of the original feature707

information in the data, thereby improving the per-708

formance of model. At the same time, using the709

transformer to extract features from the input at710

a higher level reduces the computational complex-711

ity of the model and improves its overall perfor-712

mance. Finally, the use of capsule routing mecha-713

nism and attention mechanism enables the model to714

recognize the correlation between parts and wholes,715

enhancing its generalization ability, and also effec-716

tively suppresses background noise and mitigates717

potential overfitting issues, thereby improving the718

overall performance of the model.719

We also referenced the asymmetric kernel con-720

volutional neural network mentioned in [39] and721

tested the performance of convolutional network722

models with different kernel sizes. Ultimately, we723

found that selecting a symmetric convolutional ker-724

nel with a size of 3×3 yielded the best model per-725

formance. We also conducted experiments compar-726

ing different numbers of layers in the gated con-727

volution and found that the model performed bet-728

ter when the number of layers was 3. It is worth729

noting that although incorporating the transformer730

encoder into the traditional capsule model has im-731

proved the performance, its model size in terms732

of the parameter count has also been increased to733

523,873, which is higher than that of the GCCaps734

model, with a parameter count of 448,225.735

While the proposed model has shown improve-736

ment, there is still a gap compared to the perfor- 737

mance of the CNN-Transformer model proposed in 738

[36]. This disparity arises from the fact that the 739

threshold used in this study is a fixed value, in- 740

stead of an automated threshold optimization sys- 741

tem used in [36]. The performance of the proposed 742

model is similar to that of the CNN-Transformer 743

model, if a fixed threshold is used in both models. 744

Therefore, in future research, we will focus on op- 745

timizing and improving the transformer aspect and 746

the routing mechanism to achieve better detection 747

performance. 748

5 Conclusion 749

This paper has presented a new method for poly- 750

phonic sound event detection based on the Capsule- 751

Transformer network, building upon previous re- 752

search. Firstly, we employ parallel gated convo- 753

lutions to extract features at different frequencies, 754

then a transformer encoder to extract features at 755

a higher level. Then, we use the attention lay- 756

ers within the traditional capsule network to merge 757

weights and generate final predictions. 758

The proposed system is evaluated using the 759

weakly labeled dataset of the DCASE 2017 Chal- 760

lenge Task 4. It demonstrates superior performance 761

in both the sound event detection subtask, with an 762

error rate of 0.75, and the audio tagging subtask, 763

achieving an F-score of 60.6%, as compared with 764

baseline systems. Our future research directions 765

include exploring more effective methods to im- 766

prove the routing mechanism, aiming to enhance 767

the model’s training speed and efficiency. Further- 768

more, we will investigate techniques for feature 769

augmentation to enhance the model’s robustness. 770

771

Abbreviation 772

SED: Sound event detection 773

AT: Audio tagging 774

DNN: Deep neural networks 775

GNN: Gaussian mixture models 776

MFCC: Mel-frequency cepstral coefficients 777

NMF: Nonnegative matrix factorization 778

CNN: Convolutional neural networks 779
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CRNN: Convolutional recurrent neural networks780

GCCaps: Gated convolution capsule781
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